TOP

クリップ
2017/02/19(日) 09:30 開催
東京都 本郷三丁目

2月19日(日)午前の部 データサイエンス講習会Part1

基本情報

日 時: 2017/02/19(日) 09:30 〜 12:30
会 場: LabCafe
住 所: 東京都文京区本郷4-1-3 明和本郷ビル7F

イベント内容

【2月19日(日)午前の部 データサイエンス講習会Part1】
【内容】
今回の講習会の内容は、大まかに、データサイエンス概略、多変量解析・機械学習概略、データ解析を行うためのツール比較(Excel、R、Python) 、R言語入門、多変量解析・機械学習の実行に最低限必要な統計知識、Rを用いたデータの可視化基礎、データの層別化、全変数での同時可視化、Rでの機械学習関数実行の解説を行います。本講義Part1からPart6までありますが、その一番入門的なPart1です。

【日時】2017年2月19日(日)9時半-12時半
【会場】
LabCafe
東京都文京区本郷4-1-3 明和本郷ビル7F
http://lab-cafe.net/page/access
(本郷交番向かいの、ラーメン屋さんが1Fに入っているビルです。)
東京メトロ 丸ノ内線「本郷三丁目」 徒歩3分
都営大江戸線「本郷三丁目」     徒歩3分

以下イベント詳細となります。
【タイムライン】
09:15- 開場
09:30-09:35 各参加者の自己紹介と知りたい分野の口頭発表(一言)
09:35-10:10 データサイエンス・多変量解析・機械学習概要
10:10-10:30 Rプログラミング入門
10:30-10:40 休憩
10:40-11:10 データ可視化1
11:10-11:20 休憩
11:20-11:40 データ可視化2
11:40-12:20 多変量解析・機械学習の軽い実行
12:20-12:30 質疑応答
12:30- 解散
※あくまでこのタイムラインは目安です。
※初めに各参加者の興味分野と今回参加したモチベーションを一人ひとりお聞きします。その内容によって各話題のボリュームを調整しようと思います。

【Part1の特徴】
データの可視化のうち、層別化と、全変数の可視化を体系立ててしっかり教えられる人・書籍は現状かなり少なく、その部分の資料作成にかなりの時間を割いたので、特にデータの可視化に特徴があるコースです。

【対象者層】
・研究・ビジネスでデータ解析・機械学習を使いたい方。
・書店で機械学習関連の本たくさん買ってたくさん勉強したけど結局できるようにならなかった方。
・仕組みを詳しく知るより、とりあえずデータの集計・データ可視化・解析ができるようになりたい方。
・どういうデータからどんな情報が取り出せるか知りたい方。
・Rでのデータ解析の初歩を学びたい方
・機械学習に興味はあるがどこから勉強を始めてよいかわからない方
・データサイエンスのビックピクチャーを知りたい方
・実際に自分の手で一通りデータ解析ができるようになりたい方

【Rとは?】
 オープンソースで無償である高機能な統計ソフト。世界中のRユーザが開発したRプログラム(パッケージ)がCRAN(The Comprehensive R Archive Network)というネットワークにより提供されています。プログラミング初心者でも扱いやすく、Referenceが充実しています。Excelと比べデータ可視化のツールのレパートリーが圧倒的に豊富です。R言語によりプログラムを記述します。

【参加方法】
Doorkeeperでご登録ください。

【定員】
15名

【参加費】
学生・ポスドク 無料(受付で学生証か身分証をお見せください)
社会人3000円(Part1を以前受講なされた方は無料です。受講日とお名前を受付でお申し付けください)
(当日受付にてお支払ください。お釣りのないようにお願いします。Doorkeeperの価格表示は社会人用です。)

【当日の持ち物・必要なPCのスペック・必要なソフトウェア】
※ご自身のノートPCを必ずお持ちください。

【Windowsの方】
Windows 7以上を推奨 (Xquartzのダウンロードは不要。Rだけダウンロードインストールお願いします)
Rを事前にダウンロードしてきてください(RStudioではありません)。
https://cran.r-project.org/
のDownload R 3.3.2 for Windows (62 megabytes, 32/64 bit)をクリックして、インストールを進めてください。(Download R for Windowsをクリック、baseの文章内のinstall R for the first timeをクリック、Download R 3.3.1 for Windows (70 megabytes, 32/64 bit)をクリックしてダウンロードののち、インストールを行ってください。

【Macの方】
Mac OSX(10.6以上推奨)
Rを事前にダウンロードしてきてください(RStudioではありません)。
https://cran.r-project.org/
Download R for (Mac) OS Xをクリック、R-3.3.2.pkgをクリックするとダウンロードできます。そののちにインストールしてください。
XQuartz(Macのみ)が入っていない方いましたら、ダウンロードを事前に行ってください。
https://www.xquartz.org/
ダウンロード後、ユーティリティの中にあるx11をダブルクリックしてからRをで、コードをご使用ください。
※Windows環境とMac環境両方お持ちの場合は、Windowsを推奨します。
(※当日のパソコン貸し出しは行いません。もし動作がうまくいかない場合、講義を聞くだけになります。その旨ご了承いただける方のみご参加ください。RはOSだけでなく各マシンの種類・設定によっても一部動作しない場合がありますが、それをご理解いただける方のみご参加ください)

【Linuxの方】
https://cran.r-project.org/
から、Download R for Linuxをクリック、その後、各々の環境に沿ってダウンロードインストールを行ってください。
・無線LAN搭載
・HDD空き容量2GB以上
・メモリ4GB以上

【開発環境設定】
当日の運営を円滑に行うため、環境設定はできるだけご自身で事前に行ってください。
※RとRパッケージのダウンロード・インストールで生じたマシンのすべての不具合に関して運営側は責任を負いかねます。

【開発環境設定】
当日の運営を円滑に行うため、環境設定はできるだけご自身で事前に行ってください。
※RとRパッケージのダウンロード・インストールで生じたマシンのすべての不具合に関して運営側は責任を負いかねます。

【お願い】
当日、一部でネット環境を必要とします。会場のWi-Fi回線は混みあうことが予想されますので,お持ちの方はモバイルルーターなどをご持参ください(こちらでも用意しています)。
【講習会の満足度】
・満足 約50%
・やや満足 約30%
・普通 約15%
・やや不満 約2.5%
・不満 約2.5%
【参加者が感じた講義の難易度】
・やや難33%
・普通33%
・やや易しい22%
・易しい12%
【参加者が感じたハンズオンの難易度】
・やや難11%
・普通33%
・やや易しい44%
・易しい12%
【講義の内容について参加者のご感想】
・5時間だけど濃かった。
・今後のためのよいインデックスとなった。
・初期の段階でまずデータを眺める時に、もっとスピーディにスマートにカラフルにグラフィック表示で特徴量やdfの特性を把握したいとモヤモヤしていました(Rのグラフィックは面倒と思ってた)のが解消されました。膨大な資料もありがとうございます。レファレンスに使えます!
・文系出身で高校数学の統計(数Ⅱ)もやっていない私には、基本的な単語もおぼつかない状況ではあったのですが、意外と理解できてすごく良かったです。 もちろん分からない言葉・概念も多々あったのですが、そういう分からなさ含めて良い体験でした。
・入門としてはちょうど良かった。
・講義の評価を「やや難しい」としましたが、普通に考えると難解かつ広範囲な学習の成果をシンプルにまとめていただいていたので、実のところは全然難しい感じを受けなかったですし、それってすごいことなんだろうなと思いました。
・文系出身者でも一分野の奥深い世界にコミットできる一端に入り込める余地があった。
・多変量解析が重要であることがよく分かった。

・やや早口でちょっと大変だった。→改善努力はします。。
・ボリュームはやや多いけど、それはありがたいことでもあるので良かった。
・分析手法そのものを使う前の処理(型の変換や正規化など)がもう少しあるとよいと思った。
・私はこれまでデータ解析に携わっていなくかったが、データの可視化と様々な分析法について分かりやすく解説されていたため、非常に理解しやすかった。また、それぞれの解析法がどのような場面で使えるかが示されており、実際の解析のイメージがしやすかった。
・数学や統計に関する知識がゼロのためそれぞれの単語の意味や使い方はわからなかったが、データの可視化や分析に関する多くの知識をまとめて得られたのがよかった。
・5章が駆け足でなかなか理解出来ませんでした。→改善努力します。
・Rの本を積読状態にしたまま機械学習の本も積読になりかかってたので、きっかけとして非常に良かった。
・全変数での可視化から個別の分析に落とし込んでいく流れがみえてよかった。
・可視化のバリエーションが広く、仕事で分析結果をレポートする際に使える(読んでもらえる)と感じた。
・Part 1 だけでも十分に業務に活かせそうな気がした。
・これを機に、Rの活用を考えていきたいと思います。
【ハンズオンの内容についてご感想】
・データの可視化方法に関して教えて頂き、デモデータをもとに進めるという流れで時間のロスも少なくて良かったです。これを自分の思い通りに使いこなせるようになると楽しくなるだろうと思いました。
・コピペでも対応できるようになっていたのは親切だと思った。
・実際に何度も手を動かすことでRに慣れることが出来た。
・スキルに個人差があるため、躓く人は多かったが、ある程度無視して進めたのが良かった。
・インストールしたRのシステムエラーこそあったものの、独学で学んでいた頃に比べて、「このようにシンプルに解析・グラフィクスができる」のを身を持って実感できた。
・解析のためのグラフィックの作成手法を学ぶことができ、とてもためになった。Rは独学で学んだことがあるが、可視化の手法について、このハンズオンより分かりやかったものはなかった。
・コピーも出来て良かった、ちょっとボリュームが多い感じがしたので、絞ってテーマを深掘りするのもありかと思います。
・コピペまで落とし込んでいただいて、遅れることなくついて行けました。
【イベント全体に関するご感想】
・結果を出すことを考えると簡単であるが、やはり解析とかの裏側がわからないとやや難しいなと感じた。
・とてもよかったです。非常にわかりやすかったし、新しい発見も多く、また基本だからこそ「あ、こういうやり方と考え方もあるのか!」という場面が多々ありました。 今回の講義の手法をもとに、もう少し次のレベル(例えば、モデルのチューニングや、Feature Engineeringに特化した超地味な講義があると面白いだろうな、とは期待しています。ありがとうございます。
・とても良かったです。 業務経験のみでデータサイエンスなんて全くの門外漢の私が、統計・解析の基本スキルを勉強でき、ツールで実際に操作できて、いろんなことを知ることができました。 データサイエンスの分野に対して以前と比べて格段にかなり近くなれた気がします。
・オーディエンスのレベルがばらついているのが難しいなと思いました。
・とても充実していたので、受講料が有料/より高くとも、R入門→基礎→応用→先端コースを作ってくだされば、また是非参加させていただきます。他にもPythonコースや、一人ではなかなか続けられないCouseraクラスを鈴木さんの手ほどき付きで受講できるコースなどあれば、同じく有料でも参加させていただきます。

【講師紹介】
鈴木瑞人(東京大学大学院新領域創成科学研究科 メディカル情報生命専攻 博士課程1年)
2014年3月東京大学理学部生物学科卒業
2016年3月東京大学大学院新領域創成科学研究科 メディカル情報生命専攻 修士課程卒業

【お問い合わせ先】
machine.learning.r@gmail.com

【主催】
東京大学機械学習勉強会

  • Twitterでシェア
  • 0
    Facebookでシェア
  • 0
    Google+でシェア
  • 0
    はてなブックマークに追加

タグに関連するイベント

2017/03/04(土) 19:00 〜 22:00
東京都 渋谷
2017/02/27(月) 19:30 〜 21:00
東京都 田町

Facebookページ

dots.で申込可能なイベント