TOP

クリップ
2016/07/28(木) 19:30 開催
東京都 内幸町

ITエンジニアのためのDeepLearning #最終回

基本情報

日 時: 2016/07/28(木) 19:30 〜 21:30
会 場: 株式会社ぐるなび
住 所: 千代田区内幸町1-3-1(幸ビルディング8階)

イベント内容

メイン発表者が国外へ行くため、今回が最終回になります!
[7/22追記:定員超過のため会場増席しました]

[ITエンジニア向けのDeepLarning初学者向けのセッションです]

発表者は情報のソースが乏しい時期から、C/C++/OpenCLをベースにしてDeepLearning系のライブラリ一式を組み上げた経験があることから、深層学習やパターン認識系の本の罠と、本には載っていない貴重な情報や、数式を全く使わない考え方を初学者向けに提供しています。
そのため、何故本を書かないのか?等、毎回参加者から言われるほど絶賛の声を頂いております。
※日本にいるうちにエンジニアとのネットワークを広げたいという意図で実施しています。

当日キャンセルは基本お断り申し上げます。
ドタキャンされますと、折角応募して頂いてるキャンセル待ちの方にご迷惑がかかってしまいますので、必ず1日前にはご報告くださいませ。ご理解、ご協力の程をどうか宜しくお願い致します!



*LT発表を希望される方は下記事務局まで、ご連絡下さい。
(事務局:田中)

[ タイムスケジュール ]
  • 18:45〜19:30 開場
  • 19:30〜20:00 DeepLearningセッション(技術総集編)
  • 20:00〜20:15 ライトニングトーク(若干名)
  • 20:15〜20:30 DeepLearningのビジネス利用(ぐるなび川島)
  • 20:30〜20:45 質疑応答、勉強会総括
  • 20:45〜21:45 懇親会 ※アルコールとおつまみが出ます。

※イベントの内容は当日変わる可能性があります。
※受付時に名刺を1枚ご用意ください。
※20時以降会場のビルに入れません。遅れてくる方は注意して下さい。

[ DeepLearning ]:総集編(30分)
  • #1〜#6までの振り返り


[ライトニングトーク] (15分程度)
  • 「Pricing × 機械学習」(Pisitive Sum K.K. 田中智浩)
  • 「Deeplooksについて」(株式会社 パーティー 宮本優一)


[DeepLearningのビジネス利用] (15分)
  • 最近のネットワーク構造の変遷(NTM、Memory Network、3D CNN・・・)
  • 各種ネットワークで何ができるのか
  • ビジネス・サービス利用を考察


[ DeepLearning技術編 ]:今回の技術テーマ(15分)

#8の内容(今回の内容)※内容変更の可能性あり 

  • DCNNの派生系DCGAN(Deep Convolutional Generative Adversarial Network)
  • 生成モデルの概要
  • DCGANデモ

#7の内容

  • DeepLearningの精度と計算時間
  • ニューラルネットは分散しにくい
  • パラメータ探査の困難さ(モンテカルロ法、遺伝的アルゴリズム、Q学習)
  • CPUとGPUの性質
  • GPGPUとトレードオフ(台所事情)
  • DeepLearningに於けるアクセラレートポイント
  • 失敗したOpenCLと、囲い込みのCUDA
  • 設備投資について
  • 費用対効果と相場
  • 持つものと持たざるもので分かれる機械学習

#6の内容

  • ニューラルネットワーク基礎
  • 偏微分連鎖律と数式を無視する型破りなバックプロパゲーションの理解
  • 教師あり学習のデモ
  • Weightsを視覚化してみる
  • DCNN(DeepConvolutionalNeuralNetwork)を徹底解剖します!
  • Convolution層とMaxPoolingの働きについて
  • Convolution層とMaxPoolingのバックプロパゲーションの理解
  • Convolution層の多層化の意味について
  • Convolution層のWeightsを視覚化してみる
  • DCNNの派生系についてのお話

#5の内容

  • ニューラルネットワーク基礎
  • 偏微分連鎖律と数式を無視する型破りなバックプロパゲーションの理解
  • 教師あり学習のデモ
  • Weightsを視覚化してみる
  • 教師なし学習のデモ
  • 主成分分析を視覚化してみる
  • DeepLearningの深さの利点について
  • 失敗から学ぶ。勾配消失問題を味わってみよう!
  • チューニングの全体像
  • プレトレーニングは時代遅れ
  • 失敗から学ぶニューラルネットワーク
  • MLPに於ける失敗するパラメータの事例
  • StackedAutoEncodersに於ける失敗するパラメータ事例
  • DCNNに於ける失敗するパラメータ事例

#4の内容

  • 多クラス分類について
  • 教師ありデータ収集について
  • オントロジーとは?
  • オントロジーの定義の難しさ
  • ImageNetやコンペティションの公共のデータ
  • WEBクローラーの作り方
  • BOT対策について
  • データ解析ツールの作り方とOpenCV
  • 漫画やサムネイル、別サイズの同じ画像の除去
  • ラベル貼り付けとコストについて

#3の内容

大枠の概要

  • DeepLearningの歴史と重要なネットワーク
  • 選択すべきネットワークの形とそのメリット&目的の理解
  • ライブラリの選択とセットアップ
  • DCNNじゃなくてフルコネクションネットワークと画像解析

技術詳細

  • 教師あり学習の基礎(Perceptron/MLP)
  • 教師なし学習について
  • 教師なし学習の役割と活用例
  • AutoEncoder/StackedAutoEncodersで次元圧縮と分析
  • AdamとSGDとAutoEncoderの成功と失敗パラメータ

#2の内容

大枠の概要

  • DeepLearningの歴史と重要なネットワーク
  • 選択すべきネットワークの形とそのメリット&目的の理解
  • ライブラリの選択とセットアップ
  • DCNNのパラメータ設定

技術詳細

  • DCNNの形の理解
  • PerceptronとMLPとDCNNの関係
  • ニューラルネットワークの基礎
  • PerceptronとMLPの予測計算を絵で理解する
  • PerceptronとMLPのバックプロパゲーション計算を絵で理解する

#1の内容

大枠の概要

  • DeepLearning専門用語解説
  • 選択すべきネットワークの形とそのメリット&目的の理解
  • ライブラリの選択とセットアップ
  • データ読み込み機構とアウトプット機構(画像編)
  • データ収集とWEBクローラー(画像編)
  • ラベル付の効率化(画像編)
  • DCNNのパラメータ設定

技術詳細

  • データの水増し編 (アフィン変換、ノイズ、ディストーション、プロジェクション、カラー)
  • データランダマイズサンプル
  • ランダムデータと正規分布データ
  • データ正規化(ZCA/PCA Whitening)
  • 活性化関数の選択
  • MaxOut実装方法
  • バッチ正規化と最新の活性化関数ELU(ReLuじゃないヨ)
  • L1/L2正則化とAdaGrad/RMSProp/AdaDelta/Adam/AdaMax
  • オントロジーとデータ整頓
  • 平均予測
  • GPGPUの台所事情


20:30 懇親会
  • グループセッション→懇親会
  • DeepLearningエンジニア初心者同士のDeepな情報交換も是非!
  • 世間話などなど

※会場にて簡単なおつまみとアルコールをご提供致します。


21:30 終了 お片づけ
  • Twitterでシェア
  • 0
    Facebookでシェア
  • 0
    Google+でシェア
  • 0
    はてなブックマークに追加

タグに関連するイベント

2016/12/16(金) 19:00 〜 21:00
大阪府 新大阪
2016/12/06(火) 17:00 〜 19:00
2016/12/10(土) 10:00 〜 12/11(日) 22:00
東京都 渋谷
2016/12/17(土) 13:00 〜 17:00
石川県 金沢

Facebookページ

dots.で申込可能なイベント