TOP

クリップ
2016/07/07(木) 19:30 開催
東京都 大崎広小路

ITエンジニアのためのDeepLearning #6

基本情報

日 時: 2016/07/07(木) 19:30 〜 21:30
会 場: アディッシュ株式会社
住 所: 東京都品川区西五反田1-21-8 (KSS五反田ビル6階)

イベント内容

※リピータ参加者が予想より多かったので増枠しました。(7/4)


[ITエンジニア向けのDeepLarning初学者向けのセッションです]

発表者は情報のソースが乏しい時期から、C/C++/OpenCLをベースにしてDeepLearning系のライブラリ一式を組み上げた経験があることから、深層学習やパターン認識系の本の罠と、本には載っていない貴重な情報や、数式を全く使わない考え方を初学者向けに提供しています。
そのため、何故本を書かないのか?等、毎回参加者から言われるほど絶賛の声を頂いております。

なお、本人はそろそろ自身の会社サービス開発をするために、7月末から海外へ行ってしまいます。
なので、残すところ数回のみの実施となりますので、お見逃しなく!
※日本にいるうちにエンジニアとのネットワークを広げたいという意図で実施しています。

※5/30,6/6,6/17,6/24,7/1ら続き、今回で6回目になります。
当日キャンセルは基本お断り申し上げます。
ドタキャンされますと、折角応募して頂いてるキャンセル待ちの方にご迷惑がかかってしまいますので、必ず1日前にはご報告くださいませ。ご理解、ご協力の程をどうか宜しくお願い致します!



ライトニングトークされる方を募集!

DeepLearningについてご自身で試みられていることや、
勉強するうえでハマっていること、こんなことしたい!といった事を発表してみませんか?
その場で、発表者が関連するトピックについて言及して話を広げていきます。
※トーク時間は1~3分程度で結構です。

発表を希望される方は「ライトニングトーク参加枠」でお申込み下さい。
また引き続き会場及びスポンサー様を探していますので、ご協力頂ける方は以下までご連絡くださいませ。
(事務局:田中)




[ タイムスケジュール ]
  • 19:00〜19:30 開場
  • 19:30〜19:40 イントロダクション
  • 19:40〜19:55 DeepLearningセッション(最新の事情編)
  • 19:55〜20:10 ディスカッション (パネル or ライトニングトーク)
  • 20:10〜20:30 DeepLearningセッション(技術背景,実装,Demo編)
  • 20:30〜21:30 懇親会 ※アルコールとおつまみが出ます。

※イベントの内容は当日変わる可能性があります。

[ イントロダクション ] (19:30~19:40)
  • オーガナイザ紹介
  • 本日の流れ
  • 会場提供会社ご紹介


[ DeepLearning ]:マーケット・応用先、その他(10分)
  • 2016年 シリコンバレーAIベンチャー企業とマーケット
  • DeepLearningの応用先についてのまとめ
  • ImageNetとスタンフォード大学の最先端の試み
  • マルチモーダル認識とその成果
  • 機械学習の世界コンペティションの内容
  • データ収集について


[ ディスカッション or ライトニングトーク] (質問含めて20分程度)
  • LTトークとディスカッション


[ DeepLearning技術編 ]:今回の技術テーマ(15分)

#6の内容(今回の内容)

  • ニューラルネットワーク基礎
  • 偏微分連鎖律と数式を無視する型破りなバックプロパゲーションの理解
  • 教師あり学習のデモ
  • Weightsを視覚化してみる
  • DCNN(DeepConvolutionalNeuralNetwork)を徹底解剖します!
  • Convolution層とMaxPoolingの働きについて
  • Convolution層とMaxPoolingのバックプロパゲーションの理解
  • Convolution層の多層化の意味について
  • Convolution層のWeightsを視覚化してみる
  • DCNNの派生系についてのお話

#5の内容

  • ニューラルネットワーク基礎
  • 偏微分連鎖律と数式を無視する型破りなバックプロパゲーションの理解
  • 教師あり学習のデモ
  • Weightsを視覚化してみる
  • 教師なし学習のデモ
  • 主成分分析を視覚化してみる
  • DeepLearningの深さの利点について
  • 失敗から学ぶ。勾配消失問題を味わってみよう!
  • チューニングの全体像
  • プレトレーニングは時代遅れ
  • 失敗から学ぶニューラルネットワーク
  • MLPに於ける失敗するパラメータの事例
  • StackedAutoEncodersに於ける失敗するパラメータ事例
  • DCNNに於ける失敗するパラメータ事例

#4の内容

  • 多クラス分類について
  • 教師ありデータ収集について
  • オントロジーとは?
  • オントロジーの定義の難しさ
  • ImageNetやコンペティションの公共のデータ
  • WEBクローラーの作り方
  • BOT対策について
  • データ解析ツールの作り方とOpenCV
  • 漫画やサムネイル、別サイズの同じ画像の除去
  • ラベル貼り付けとコストについて

#3の内容

大枠の概要

  • DeepLearningの歴史と重要なネットワーク
  • 選択すべきネットワークの形とそのメリット&目的の理解
  • ライブラリの選択とセットアップ
  • DCNNじゃなくてフルコネクションネットワークと画像解析

技術詳細

  • 教師あり学習の基礎(Perceptron/MLP)
  • 教師なし学習について
  • 教師なし学習の役割と活用例
  • AutoEncoder/StackedAutoEncodersで次元圧縮と分析
  • AdamとSGDとAutoEncoderの成功と失敗パラメータ

#2の内容

大枠の概要

  • DeepLearningの歴史と重要なネットワーク
  • 選択すべきネットワークの形とそのメリット&目的の理解
  • ライブラリの選択とセットアップ
  • DCNNのパラメータ設定

技術詳細

  • DCNNの形の理解
  • PerceptronとMLPとDCNNの関係
  • ニューラルネットワークの基礎
  • PerceptronとMLPの予測計算を絵で理解する
  • PerceptronとMLPのバックプロパゲーション計算を絵で理解する

#1の内容

大枠の概要

  • DeepLearning専門用語解説
  • 選択すべきネットワークの形とそのメリット&目的の理解
  • ライブラリの選択とセットアップ
  • データ読み込み機構とアウトプット機構(画像編)
  • データ収集とWEBクローラー(画像編)
  • ラベル付の効率化(画像編)
  • DCNNのパラメータ設定

技術詳細

  • データの水増し編 (アフィン変換、ノイズ、ディストーション、プロジェクション、カラー)
  • データランダマイズサンプル
  • ランダムデータと正規分布データ
  • データ正規化(ZCA/PCA Whitening)
  • 活性化関数の選択
  • MaxOut実装方法
  • バッチ正規化と最新の活性化関数ELU(ReLuじゃないヨ)
  • L1/L2正則化とAdaGrad/RMSProp/AdaDelta/Adam/AdaMax
  • オントロジーとデータ整頓
  • 平均予測
  • GPGPUの台所事情


20:30 懇親会
  • 数少ないDeepLearningエンジニアとWEBエンジニアの間で交流をしましょう!
  • DeepLearningエンジニア初心者同士のDeepな情報交換も是非!
  • 世間話などなど

※会場にて簡単なおつまみとアルコールをご提供致します。


21:30 終了 お片づけ
  • Twitterでシェア
  • 0
    Facebookでシェア
  • 0
    Google+でシェア
  • 0
    はてなブックマークに追加

タグに関連するイベント

2016/12/18(日) 13:00 〜 16:00
大阪府 西大橋
2016/12/16(金) 13:30 〜 17:30
東京都 白金高輪
2017/01/29(日) 18:00 〜 20:00
東京都 神泉

Facebookページ

dots.で申込可能なイベント